

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

XLAYER: A CROSS-LAYER COMMUNICATIONS SUBSTRATE FOR
TACTICAL ENVIRONMENTS

Florida Institute for Human and Machine Cognition

June 2010

FINAL TECHNICAL REPORT

AFRL-RI-RS-TR-2010-127

 ROME, NY 13441 UNITED STATES AIR FORCE AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or corporation;
or convey any rights or permission to manufacture, use, or sell any patented invention that
may relate to them.

This report is the result of contracted fundamental research deemed exempt from public
affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec
08 and AFRL/CA policy clarification memorandum dated 16 Jan 09. This report is
available to the general public, including foreign nationals. Copies may be obtained from
the Defense Technical Information Center (DTIC) (http://www.dtic.mil).

AFRL-RI-RS-TR-2010-127 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/
KURT A TURCK WARREN H. DEBANY, Jr.
Work Unit Manager Technical Advisor, Information Grid Division

 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

JUNE 2010
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

June 2007 – December 2009
4. TITLE AND SUBTITLE

XLAYER: A CROSS-LAYER COMMUNICATIONS SUBSTRATE FOR
TACTICAL ENVIRONMENTS

5a. CONTRACT NUMBER
N/A

5b. GRANT NUMBER
FA8750-07-2-0185

5c. PROGRAM ELEMENT NUMBER
62702F

6. AUTHOR(S)

Marco Carvalho

5d. PROJECT NUMBER
558J

5e. TASK NUMBER
CL

5f. WORK UNIT NUMBER
CS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Florida Institute for Human and Machine Cognition
40 South Alcaniz Street
Pensacola, FL 32502-6008

8. PERFORMING ORGANIZATION
REPORT NUMBER

 N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RIGC
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
 N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2010-127

12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research
deemed exempt from public affairs security and policy review in accordance with SAF/AQR memorandum
dated 10 Dec 08 and AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
The notion of a cross-layer communications substrate for tactical battlefield environments described in this work proposes to address
the problem by enabling a two-way interface between higher-level applications, middleware or decision architectures, and the
underlying communications infrastructure. The adaptation across multiple layers of the communication stack requires mechanisms
capable of coordinating local adaptation at different time-scales to better allocate resources and capabilities in response to changes
that may occur either on demand or proactively, based on explicit application requirement patterns. XLayer is a specialized cross-
layer communications substrate designed to support a communications infrastructure for tactical and mobile ad hoc networks that
provides the mechanisms to enable the interaction between applications and the different levels of the communications substrate to
support a large range of scenarios and capabilities.

15. SUBJECT TERMS
Cross-layer Communication Substrate, mobile ad hoc networks (MANETs), Predictive Routing, Adaptive Discovery, Information
Dissemination, Dynamic Gateway Selection

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

48

19a. NAME OF RESPONSIBLE PERSON
Kurt A. Turck

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
N/A

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.

 i

ABSTRACT

Tactical and mobile ad hoc networks (MANETs) are key technology enablers for future
mission-critical communication infrastructures such as those envisioned for disaster
relief operations and military missions. While extremely flexible and powerful, these
kinds of networks also create a new set of demands. The traditional layered approach
that has shielded applications from the underlying networks is no longer applicable, and
a new challenge has emerged—how to provide such interface or mutual awareness
while avoiding customized stove-piped solutions.
The notion of a cross-layer communications substrate for tactical battlefield
environments described in this work proposes to address the problem by enabling a
two-way interface between higher-level applications, middleware or decision
architectures, and the underlying communications infrastructure.
The adaptation across multiple layers of the communication stack requires mechanisms
capable of coordinating local adaptation at different time-scales to better allocate
resources and capabilities in response to changes that may occur either on demand or
proactively, based on explicit application requirement patterns.
XLayer is a specialized cross-layer communications substrate designed to support a
communications infrastructure for tactical and mobile ad hoc networks that provides the
mechanisms to enable the interaction between applications and the different levels of
the communications substrate to support a large range of scenarios and capabilities.
In this report we summarize some of the concepts, architectural design choices and
capabilities of the XLayer communications substrate.

ii

TABLE OF CONTENTS
SUMMARY .. 1
1 INTRODUCTION .. 2
2 METHODS, ASSUMPTIONS AND PROCEDURES .. 3

2.1 Design Assumptions ... 3
2.1.1 Visibility .. 4
2.1.2 Control ... 4
2.1.3 Distributed Coordination .. 4

2.2 Project Goals and Requirements .. 4
2.2.1 Seamless Support of Heterogeneous Networks .. 5
2.2.2 Adaptive Discovery and Information Dissemination 5
2.2.3 Improved Routing and Transport Support .. 6
2.2.4 Improved Visibility of Network State .. 6

2.3 Design Approach and Evaluation Procedures ... 7
2.3.1 Experimental Studies and Evaluations... 7

3 THE XLAYER COMMUNICATIONS SUBSTRATE .. 9
3.1 Introduction ... 9
3.2 Related Work .. 9
3.3 The XLayer Architecture ... 10

3.3.1 The XLayer Proxy API ... 12
3.3.2 XLayer Services ... 14
3.3.3 XLayer Controllers ... 16

3.4 Supported Platforms and Proof-of-Concept Implementation 18
3.5 Emulation Environment based on XLayer ... 18

3.5.1 The MLAB Testbed .. 18
3.5.2 XLayer and MLAB Integration .. 20

4 RESULTS AND DISCUSSION ... 23
4.1 Predictive Routing ... 23
4.2 Adaptive Dual-Link Allocation for Transport Support ... 25
4.3 Dual-Path Algorithms for Tactical Environments ... 27
4.4 Adaptive Discovery and Information Dissemination .. 28
4.5 Dynamic Gateway Selection ... 29

iii

4.6 Distributed Monitoring Service .. 31
4.7 Dynamic Integration of Heterogeneous Networks ... 31

5 CONCLUSIONS ... 35
6 RECOMMENDATIONS .. 36
7 REFERENCES ... 37
SYMBOLS, ABBREVIATIONS, AND ACRONYMS ... 39

iv

LIST OF FIGURES

Figure 1. Overlapping Topologies ... 3
Figure 2. Some of the Platforms and Tactical Radios Tested with the XLayer Substrate 8
Figure 3. The XLayer Architecture .. 11
Figure 4. The MLAB testbed: the control (gray) and data (blue) networks 19
Figure 5. Main Coordination and Enforcement Components of the MLAB testbed 20
Figure 6. Cross-Layer Services for the MLAB Emulation Environment 22
Figure 7. Mobility-induced routing table deviations with time (from left to right) 23
Figure 8. Mobility and Propagation Models for POLSR ... 24
Figure 9. POLSR Experimental Results .. 24
Figure 10. Experimental Setup for Dual-Link Management Controller 25
Figure 11. Online Strategies for Dual-Link Management, in Support to Application

Requirements ... 26
Figure 12. Example heuristics for the dual-path algorithm .. 27
Figure 13. Adaptive Discovery/Dissemination based on Local Network Density 28
Figure 14. Adaptive CDS-based Discovery ... 29
Figure 15. Parsing unknown routing messages .. 30
Figure 16. Simulation results for the dynamic gateway controller 31
Figure 17. Seamless integration of heterogeneous networks .. 32
Figure 18. Demonstration Phase A – Launching UAV .. 32
Figure 19. A potential target is located in Phase B, triggering the publications of images

from the UAV ... 33
Figure 20. Subsequent Phases of the Demonstration Scenario 34

v

LIST OF TABLES

Table 1. XLayer Services .. 14
Table 2. XLayer Controllers ... 17
Table 3. MLAB Software Components .. 21

 1

SUMMARY

Traditionally, cross-layer strategies for tactical and mobile ad hoc networks have
primarily focused on short-term adaptation and state reporting between neighboring
layers, generally for the optimization of a single protocol. Because local adaptations at
each layer usually occur at different time-scales, a better coordination mechanism for an
effective cross-layer communication infrastructure is required to allow applications and
decision architecture systems to better adapt and meet Quality of Service (QoS)
requirements and constraints.
We have developed XLayer, a cross-layer infrastructure for tactical networks that
provides the necessary mechanisms to enable the interaction between applications or
middleware and the different levels of the communications substrate, facilitating the
integration of more complex functionality by leveraging the information and functionality
provided by core services that abstract essential capabilities realized across the various
layers of the communications stack.
XLayer supports several operating systems, multiple computing platforms, and tactical
radios where specific capabilities enable seamless operation across multiple networks
and communication environments in tactical systems and other applications in security
and network management.

2

1 INTRODUCTION

In this report, we summarize our findings in the research for the development of XLayer,
a cross-layer communications substrate designed to provide a modular communications
infrastructure that allows applications to better adapt to the characteristics of dynamic
communications environments, and support application requirements and constraints
for tactical and mobile ad hoc networks.
Section 2 describes the methods, assumptions and procedures in the development of
XLayer. Section 3 introduces the goals and capabilities of XLayer, summarizes the main
characteristics of previous cross-layer approaches that addressed similar problems
considered in our research, and gives a detailed description of the design and
implementation of XLayer and its core components. Section 4 presents specific
applications and discusses the results. Section 5 summarizes our conclusions and
discusses the impact of XLayer in different projects and demonstrations. Finally, Section
6 presents our suggested course of actions.

3

2 METHODS, ASSUMPTIONS AND PROCEDURES
The XLayer communications substrate was designed to provide a modular framework
for distributed monitoring and resource management in tactical environments. In this
section we introduce our design assumptions and evaluation methods.

2.1 Design Assumptions
We consider a mobile wireless network environment where each platform may
potentially have multiple communications interface, connected through shared or point-
to-point network links. As illustrated in Figure 1a, our target scenario includes a
conventional link-uniform topology used in MANET research, where platforms are
assumed to communicate through a common network medium that is shared between
all nodes. In Figure 1b, the true underlying topology is shown, with connections between
the different interfaces.

Figure 1. Overlapping Topologies

4

2.1.1 Visibility
Each interface can be fully monitored and attributes at different layers can be
configured, at run time, by the proposed infrastructure. Visibility is an important
capability for resource management and coordination across different nodes and
applications. Low-level network visibility can be achieved through monitoring APIs
provided by the Operating System, radio-specific APIs, or customized components that
communicate with the radio interface.
Monitoring and control of network and transport protocols require some level of code
change. Alternatively, low-level data packets, such as those at the MAC-level, can be
mapped and correlated to routing and transport, if not encrypted.
Application-level monitoring also requires some level of collaboration or feedback from
applications, which may be provided, for instance, through common APIs used by
applications to monitor and report system resources, protocols, and services.

2.1.2 Control
Also as part of this work, we assume that configuration and control APIs for the system
are available at run-time. Due to time-scale requirements of different layers and
communication components, it is important that both monitoring and control APIs can
operate in different time scales, and yet share the necessary messages and information
for coordination.
We assume that each node has full control over its communications and computational
resources, and can reconfigure its settings at all layers, at run time. Such configurations
include, for instance, physical network interface settings, beaconing parameters and
window sizes of higher-level protocols, and also application-level restrictions for
resource utilization, computational load, data shaping, etc.

2.1.3 Distributed Coordination
Lastly, we assume that nodes can share state information and coordination messages
efficient for distributed network management. The sharing of information must be done
efficiently and must minimize the co-dependency between services and applications.
We assume that high-level services and applications can be modified to utilize
messaging and control APIs provided by the infrastructure for discovery and information
exchange.

2.2 Project Goals and Requirements
The primary goal of the proposed project was to create a communication substrate (or
middleware) that would closely interface low level protocols and capabilities in the
tactical network environment with high level distributed applications and information
management systems. The goal was to establish this seamless cross-layer interface to
improve the agility, visibility and coordination of information management systems, while
maintaining a loose coupling between the applications and communications
infrastructure.

5

As a proof-of-concept of the proposed cross-layer capabilities, we have scoped our
project to address four areas of special interested, while focusing on the architectural
design, core capability development, modularity and extensibility of the proposed
infrastructure. The four areas chosen as proof-of-concept for our developments are
described in the following paragraphs.

2.2.1 Seamless Support of Heterogeneous Networks
Actual battlefield deployments generally include a number of tactical radios with
different link and data rate capabilities. The technical characteristics of different
interfaces and data links may vary significantly in terms of capacity, latency, medium
access policies, etc.
Links are connected to an interface and applications bind to specific interfaces to
communicate with one another, effectively forming sets of overlapping networks that are
connected through some of the multi-interface nodes in the database. A capability of
interest for the proposed substrate is to seamlessly communicate across the different
networks, allowing applications to locate, and address each other effortlessly, taking
advantage of the best communication paths between the two end-points.
Such capability should be achieved transparently, not requiring applications to maintain
separate links to multiple interfaces, or even being aware of multiple interfaces and
networks.
The XLayer communications substrate achieves this capability by creating a common
network service that controls each interface independently (see 3.3.2.7). This capability
was also demonstrated in simulation on an emulated environment using different links
and tactical radios (see 4.7).

2.2.2 Adaptive Discovery and Information Dissemination
In the context of this work, discovery refers to the process through which a node
becomes aware of other nodes and the services they provide. Nodes make use of the
discovery mechanism to register services and advertise the availability of computational
resources through the dissemination of messages across the network. Likewise, the
dissemination of queries enables nodes to find other nodes and services with specific
capabilities and resource availability.
Because of the lack of a fixed infrastructure and the presence of nodes that are allowed
to move freely through the network, discovery and information dissemination is often
accomplished in MANETs by the broadcasting of packets. The most simplistic form of
broadcasting, called flooding, typically causes unproductive and harmful bandwidth
congestion as each node retransmits each received packet exactly once.
Many researchers have proposed more efficient broadcasting techniques whose goal is
to minimize the number of retransmissions and thus reduce the overhead of information
dissemination in MANETs. Although more efficient than simple flooding, the
effectiveness of these techniques to reduce congestion and resource utilization greatly
depends on the network topology and traffic conditions [20].

6

We have designed a hybrid discovery and information dissemination mechanism that is
capable of self-adapting to different network topologies and traffic scenarios. This self-
adapting mechanism monitors the network at different levels to make use of a
broadcasting algorithm that is more suitable for a set of localized network conditions.
The evaluation results of our approach are discussed in section 4.4.

2.2.3 Improved Routing and Transport Support
Information gathered from physical and network layers can also enable the
improvement of routing and transport protocols for enhanced application or information
management system support.
At the routing level, we have investigated a number of cross-layer strategies for
improvement, including specialized multicast implementations [10][11], and predictive
routing protocols, detailed in section 4.1.
We have also explored these capabilities for cross-domain routing, designing a dynamic
gateway selection controller that seamlessly, and on demand, created proxy nodes to
bridge across heterogeneous routing protocols [7]. Dynamic gateway selection is further
discussed in section 4.5.
In terms of transport protocols, we have investigated dual-link strategies to improve the
reliability or throughput of transport protocols, in response to requirement defined by
higher-level services and applications.

2.2.4 Improved Visibility of Network State
Network visibility is a critical capability for adaptive information systems and
applications. Critical information includes the configuration of computational platforms
and interfaces, as well as the demand (e.g. ongoing data flows and computational
requirements) and availability of resources.
The XLayer communications substrate provides the bases for a distributed monitoring
infrastructure that enables both the collection, aggregation and sharing of node state
information for resource management. The XLayer distributed monitoring service was
applied in support of a related AFRL project entitled QoS-Enabled Data Dissemination
[13][14][15], and is further discussed in section 4.6.
Information disseminated through the Monitoring Service is available to other services
and applications at each node, and used for tasks that include dynamic resource
allocation and planning.

7

2.3 Design Approach and Evaluation Procedures
The XLayer substrate is, by design, a collection of control algorithms that share a
common representation, data-storage, communications, and coordination infrastructure.
As detailed in Section 3, algorithms implemented as XLayer controllers can be
instantiate and parameterized on demand to support application requirements or other
services. Our experimental validation and evaluation procedures varied for different
algorithms and contexts, but they were generally based on numerical simulations,
emulation experiments in controlled environments, and field test exercises, which were
primarily used for demonstrations and qualitative results.

2.3.1 Experimental Studies and Evaluations
In the early stages of the project, we relied on the NS-2 simulator for testing and
evaluation, which was later replaced with NS-3 as our primarily simulation environment.
In addition to simulation, we have also developed an emulated network environment for
development and evaluation where different link conditions can be quickly emulated to
recreate a dynamic network topology, while allowing the XLayer substrate, information
management system and applications to run in virtual machines operating at standard
operating system time-scales. Emulation environments are very important to support the
evaluation of systems and protocols that are time-sensitive, such as routing and reliable
transport protocols like TCP. For such studies, the event driven nature of simulated
environments often create artifacts on the data that may compromise the results. In
support to this task we have developed a testbed emulation environment that is
described in section 3.5.
In addition to emulated environments for development and experimentation, we have
also implemented the cross-layer substrate for actual field test and evaluation. Figure 2
illustrates some of the computational platforms and tactical radios where we tested the
XLayer substrate.
Serial and tactical radios such as the Mircrohard Spectra, the PCS-5D, and the
EPLRS/Microlights were supported through their serial or IP interfaces. For those
radios, the XLayer substrate was running at the computer to which the radios where
connected, and managed the radios through a virtual interface in the Network
Management Service (see 3.3.2.7).
For other devices with accessible computational platforms, such as the Lynksys base-
stations, the Soekris boards, iPhone and iPod Touch platforms, and others, the XLayer
was ported to the native operating system to directly manage the communications
interfaces.

8

Figure 2. Some of the Platforms and Tactical Radios Tested with the XLayer Substrate

The operating systems supported for the Linksys radios were the OpenWRT (both the
White Russian and Kamikaze versions). In those platforms, the XLayer managed all the
wired and wireless interfaces, and also controlled the USB interfaces to enable GPS
and external storage capabilities for logging.
The Soekris boards (http://www.soekris.com/) supported multiple network interfaces
through MinPCI cards using the Pyramid operating system. Both the OpenWRT and
Pyramid OS implementations of the XLayer provided full monitoring of the
communications interfaces, and computational resources such as memory and CPU
utilization. Limited control of physical layer properties (such as transmission power) was
also available on some of the platforms.

http://www.soekris.com/

9

3 THE XLAYER COMMUNICATIONS SUBSTRATE

3.1 Introduction
XLayer was designed to provide a modular communications infrastructure that allows
applications and decision architecture systems to better adapt to and leverage the
characteristics of the dynamic communications environment. It also enables the
underlying communications infrastructure to better support application requirements and
constraints.
In support of the application and decision architecture systems, XLayer monitors,
abstracts, and represents the characteristics and capabilities of the underlying
communications infrastructure so applications can better adapt to changes in the
underlying communications environment (e.g., by re-allocating resources).
In support of the communications infrastructure, applications can provide information
about resource requirements (both computational and communications) or utilization
patterns. This information can then be used by the underlying communications
infrastructure to better allocate resources and capabilities in response to changes that
may occur either on demand or proactively, based on explicit application requirement
patterns.

3.2 Related Work
Traditionally, cross-layer strategies for tactical and mobile ad hoc networks have
primarily focused on short-term adaptation and state reporting between neighboring
protocol layers, generally for the optimization of a single protocol such as Transmission
Control Protocol (TCP) [12].
In general, most implementations are based on variations of QoS protocols inherited
from the wired networks and still utilize some of the notions of signaling and
coordination of neighboring protocol layers for resource reservation. The goal of most
traditional cross-layer strategies is to monitor and detect short-term changes in channel
conditions or competing traffic to notify upper layers about new QoS conditions. In most
cases, applications are generally expected to adjust data rates accordingly when
notified by a neighboring layer that current service expectations are no longer available.
As illustrated by Goldsmith and Wicker [9], the actual adaptation and reporting between
layers is generally done after local layer adaptations are no longer possible or cost
effective. The different time-scales at each layer usually imply that local adaptation
within each layer generally occurs first, and more frequently, than adaptation between
layers.
Protocols like dRSVP [16], for instance, provide per-flow end-to-end bandwidth
guarantees for a range of requirements as opposed to a specific requirement like in
RSVP. In this case, dRSVP "routers" exchange bandwidth reservation details through a
signaling protocol and the flow is either denied access or dropped if channel availability
becomes insufficient.

10

The SWAN Protocol [2] also uses signaling for short-term resource reservation. SWAN,
like dRSVP, is fully decentralized, but it is best effort only and makes no assumptions
about underlying QoS capabilities from the Medium Access Control (MAC) layer. The
signaling in SWAN is intended for flow admission and the cross-layer nature of the
protocol lies in the fact that MAC level packet delay information is shared and used for
estimating medium access contention. After a flow is admitted in SWAN, the protocol
uses the packet's explicit congestion notification flag (ECN) to notify that requested
services are no longer supported for that flow.
TIMELY [3] is another cross-layer architecture that provides link layer scheduling,
resource reservation and adaptation, as well as priority-aware transport protocol that
self-regulates flow based on feedback from the lower layers. TIMELY was initially
proposed for cell-based wireless networks, and helped create the basis for subsequent
ad hoc specific architectures and protocols with similar capabilities like Spine [18] and
CEDAR [17].

3.3 The XLayer Architecture
XLayer is specifically designed to provide and support a communication infrastructure
that allows applications and decision architecture systems to better adapt and meet
QoS requirements and constraints. A modular architecture makes XLayer flexible
enough to support different scenarios that require of very specific capabilities.
In the XLayer architecture (Figure 3), each service module provides a set of capabilities
that can be directly utilized by other models, by loadable sub-controllers, or even by
overlaying applications. Furthermore, state information created or maintained by
different modules can be registered and made available to other components within the
architecture. The goal is to facilitate the sharing of state information, avoiding the
redundant rediscovery costs and overhead. For example, neighborhood and link
detection are critical tasks for several types of applications and services (e.g. routing,
discovery, data dissemination, etc.). XLayer enables neighborhood and link information
to be easily shared to avoid the existence of redundant detection mechanisms on each
of these services.

11

Figure 3. The XLayer Architecture

XLayer supports two types of modules: services and controllers. XLayer services
provide essential capabilities to other XLayer components and are typically started upon
instantiation of the XLayer. XLayer controllers allow developers to extend the
functionality of the XLayer and can be enabled or disabled depending on the
requirements of client applications.
In general, client applications communicate with the XLayer service using TCP sockets
and a proprietary binary protocol. In order to simplify the development of these client
applications, a proxy library, which is available in C++ and Java, enables remote
procedure calls by handling the marshaling and unmarshaling of function parameters
and results.
The proxy handles the registration of several callback mechanisms. These callbacks
inform client applications of the state of the channel between the application and the
XLayer service (connected, disconnected), reception of messages, and monitoring
events from metric and property updates. Additionally, the proxy provides a mechanism
to create datagram and stream-oriented sockets that may be used transparently by
applications to take advantage of the XLayer transport capabilities such as dual-path
flows, multi-path routing, adaptive transport, and reliable UDP-based transport [4].

12

3.3.1 The XLayer Proxy API
The XLayer Proxy API is implemented in C++, but a Java Native Interface (JNI) wrapper
allows Java applications to interact with the XLayer as well. The XLayer Proxy enables
applications to transparently take advantage of the capabilities of XLayer based on a
rich set of APIs that core services and controllers implement and expose through well-
defined mechanisms. Existing native and Java applications may, for example, use
datagram and stream-oriented sockets that transparently interface with the XLayer
transport service to offer capabilities such as adaptive and dual-path transport and
multi-path routing.
The C++ and Java XLayer proxy implementations provide the necessary APIs to
connect and communicate with an XLayer service running locally or in a remote host.
The following code fragment in C++ shows how to create an instance of the proxy to
connect to an XLayer service running locally:

#include “XLayerProxy.h”

...

XLayerProxy *pProxy = new XLayerProxy();

pProxy->connect();

...

In the previous C++ example, the XLayerProxy will attempt to connect to the XLayer
service running on the same host. That is, the XLayerProxy will try to open a connection
to localhost on port 2000. The invocation of the connect method will not return until the
XLayerProxy manages to establish a connection with XLayer. For this reason, in case
the XLayerProxy needs to be connected to a XLayer service running on a remote host
or in a port different (other than the default one), a connection can be made as follows:

#include “XLayerProxy.h”

...

XLayerProxy *pProxy = new XLayerProxy();

pProxy->connect("192.168.1.1", 2000);

...

13

Note that the call to the connect () method may block if not XLayer is running on the
given address and port number. In this case, a timeout value in milliseconds (2000
milliseconds, for example) can be specified as follows:

#include “XLayerProxy.h”

...

XLayerProxy *pProxy = new XLayerProxy();

pProxy->connect(“192.168.1.1”, 2000, false, 3000);

...

The proxy can also connect to XLayer asynchronously. In this case, the proxy notifies
the client application through the XLayerProxyListener interface when the connection to
the XLayer service is established. In the same manner, the proxy notifies the client
application when it is disconnected from XLayer.

#ifndef XLAYERPROXYLISTENER_H_

#define XLAYERPROXYLISTENER_H_

class XLayerProxyListener

{

 public:

 virtual ~XLayerProxyListener();

 virtual void connected() = 0;

 virtual void disconnected() = 0;

};

#endif /* XLAYERPROXYLISTENER_H_ */

Once connected, the application can use the capabilities of XLayer through the XLayer
Proxy API.

14

3.3.2 XLayer Services
XLayer services are modules that provide the essential capabilities required by other
components to perform more complex tasks (See Table 1). In the XLayer, a set of core
services provide support for network interface detection and configuration, transport of
messages, flooding, neighbor discovery, and monitoring of the different node and
network properties, such as resource utilization, link quality, topology, and route
information.

Table 1. XLayer Services

Service Name Main Capabilities
Basic Service Provides bootstrap APIs for XLayer’s controllers and

services.

Logging Service Provides a mechanism for remote logging of the
XLayer service.

Information Service Constitutes the central repository of shared information
in XLayer.

Dissemination Service Provides a common API for a configurable set of
message flooding mechanisms for MANETs.

Transport Service Provides end-to-end communication for XLayer-
enabled nodes.

Message Propagation Service Provides 1-hop communication with other XLayer-
enabled nodes.

Network Management Service Detects and manages all physical (wired and wireless)
network interfaces that are available to XLayer.

3.3.2.1 Basic Service
The Basic Service makes available two key functionalities to other XLayer modules: 1) a
mechanism to load/start and unload/stop XLayer controllers, and 2) a mechanism to
add or remove bridge connections. A bridge connection is a permanent TCP connection
that is established with another XLayer service to interconnect two or more XLayer-
aware networks with different address spaces, transport protocols, or routing
algorithms.

15

3.3.2.2 Logging Service
The Logging Service provides a mechanism for remote logging of the XLayer service.
Log messages are intercepted and sent over a UDP socket to facilitate monitoring and
debugging of XLayer modules executed on platforms which can only be accessed
remotely or have very limited storage space.

3.3.2.3 Information Service
The Information Service constitutes the central repository of shared information in
XLayer. It holds and provides access to information about the local and remote nodes,
as well as the existing links between them. The Information Service uses the available
information to compute routes and link quality metrics such as packet drop rates and
delays, and advertises the properties of the local node such as number of interfaces,
CPU usage, memory, disk and network utilization. Additionally, it provides synchronous
and asynchronous notification mechanisms for node discovery and status and topology
changes.

3.3.2.4 Dissemination Service
The Dissemination Service provides a common API for a configurable set of message
flooding mechanisms for MANETs. Flooding is often used by numerous routing and
distributed coordination algorithms in MANETs, but it generally constitutes a very
expensive operation in mobile ad hoc networks [20]. The Dissemination Service enables
applications to use the most suitable flooding algorithm given the current network
conditions. Additionally, it provides a mechanism for registering messages that need to
be repeatedly and periodically disseminated at specific time intervals, effectively
enabling a powerful API for proactive message propagation in the network.

3.3.2.5 Transport Service
The Transport Service provides end-to-end communication for XLayer-enabled nodes
and the ability to track and split flows in order to support dual-path algorithms. The
reception and forwarding of messages is done through the Message Propagation
Service, however, the Transport Service is responsible for determining which
interface(s) will be used to forward the message. This makes possible for the Transport
Service to provide optimized, reliable and adaptive transport capabilities to
accommodate the QoS requirements of other components and applications.

3.3.2.6 Message Propagation Service
The Message Propagation Service provides 1-hop communication with other XLayer-
enabled nodes through unicast, broadcast or multicast UDP packets that encapsulate
one or more XLayer messages. XLayer controllers, services and applications can
register message handlers for specific or new message types. In addition, the Message
Propagation Service provides basic neighbor discovery and link sensing, consolidated
transmission of multiple messages to reduce bandwidth utilization, and extensible
packet headers and packet filters that can be used to enable topology emulation
capabilities, instrumentation, monitoring and other important features required by
controllers and middleware applications.

16

3.3.2.7 Network Management Service
The Network Management Service detects and manages all physical (wired and
wireless) network interfaces that are available to XLayer. Additionally, it gathers
statistics on the number of packets (and bytes) transmitted and received on each of the
network interfaces. It also makes available an API to activate and deactivate interfaces,
and to notify other modules about their status (up, down).

3.3.3 XLayer Controllers
The functionality of the XLayer can be extended through XLayer controllers. An XLayer
controller is a module that implements one or more algorithms to perform specific tasks
(See Table 2). In many cases, these algorithms can be made available to other XLayer
modules and composed to further extend the XLayer functionality.

17

Table 2. XLayer Controllers

Task Description
Group Management
and Discovery

A set of controllers provides basic group management and
discovery. These controllers use the Dissemination Service to
permanently advertise group membership and perform peer
searches within a certain scope (i.e., hop-distance).

Adaptive and Predictive
Routing

A predictive routing controller is responsible for correcting the
offset of hello messages of a link-state routing protocol to
construct a projection of the topology for next hop selection.
In our previous research [8], we have shown significant
improvements in both packet loss and average delay for
predictive routing by simply adjusting the local topology
based on short-term mobility and link quality trends for
neighbor nodes.

Dynamic Gateway
Selection

A controller allows XLayer to use different routing strategies
that can help to reduce routing related traffic on ultra dense
networks.

Multicast Forwarding A controller provides efficient multicast packet forwarding in
MANETs based on the approach followed by the OLSR Basic
Multicast Forwarding (BMF) plug-in [19] and the capabilities
of the Dissemination Service.

Topology Adaptation
and Control

A set of controllers makes use of information about the flows
of data going through the neighbors of the local node to
change its position based on the application's transport
requirements.

Virtual Topology Control A controller registers an extended header and filter to inspect
all packets received by the Message Propagation Service in
order to accept or reject packets based on the sender and
receiver node's virtual position and their transmission power,
constructing a virtual topology that can be used to setup
simulations and experiments.

Platform Emulation A set of controllers enables applications to transparently
access node's properties such as position, direction, and
speed, without making any assumptions about the
environment where XLayer is running.

XLayer can dynamically load XLayer controllers. The dynamic loading of XLayer
controllers has three main advantages: 1) it makes possible to extend the functionality
of the XLayer without changing the XLayer executable, 2) it encourages the reutilization
of code by sharing common functionality among controllers, and 3) it facilitates the
integration XLayer controllers by third-parties.

18

3.4 Supported Platforms and Proof-of-Concept Implementation
As described in the previous section, a proof-of-concept implementation of the XLayer
architecture was developed in C++, with proxy APIs for C++ and Java. This
implementation was extensively tested and demonstrated in different environments, and
has been used to evaluate some of the controllers described in Section 3.3.3.

3.5 Emulation Environment based on XLayer
Test and validation of MANET technologies and applications have always been a
complex and challenging problem. Theoretical models of such networks have
traditionally been used as the basis for simulation and emulation frameworks. However,
in most cases, such models are generally too complex to be practical or too simplistic to
be representative.
Not surprisingly, the alternative approach for validation and development is to rely on
field experiments which are usually costly, time consuming and very difficult to replicate.
In the case of airborne networks, the issue is even more complicate, as it involves more
degrees of freedom for the participating nodes and multiple external effects such as
shadowing caused by the airframe, engine interference and others. All these factors are
very difficult to model and represent in a simulated or emulated environment accurately.
As an extension to this project, we executed a task to design and develop a hybrid
emulation testbed for mobile ad hoc networks called MLAB. MLAB enables both the use
of theoretical propagation models and experimental data to emulate link characteristics
between nodes. Furthermore, it allows for a mixed modeling strategy that includes both
the theoretical models and experimental field data.
These characteristics make it a well-fit emulation environment for airborne networks,
where the multiple degrees of freedom and complexity of the nodes make it very difficult
to create reliable theoretical models that would suffice for the emulation.

3.5.1 The MLAB Testbed
Figure 4 illustrates the basic architecture and the physical layout of the MLAB testbed.
Note that each testbed node has two interfaces, one connected to the control network,
and the other connected to the data network. The only exception is the controller
machine, which is only connected to the control network because it plays no role on
data exchange. The design physically separates control from data traffic, minimizing the
effects of monitoring and control in the actual experiment.
The first version of the emulation environment made use of a Linux service for tagging
all IP packets transmitted through the data interface and a kernel library for capturing
and filtering those packets in order to emulate the required link conditions. The second
implementation of the MLAB testbed used a virtual network interface for link
enforcement based on the TUN/TAP virtual network kernel driver, providing a much
more flexible and faster mechanism for link parameterization.

19

Figure 4. The MLAB testbed: the control (gray) and data (blue) networks

Parameters for the TUN/TAP virtual interface are provided at run-time by a link
modeling application running at the controller node (see Figure 5), for a given network
topology and mobility scenario. All data coordination messages between the controller
and enforcement drivers are done through an isolated network known as the Control
Bus. On the other hand, all data messages between applications running on the
emulation network are exchange through the Data Bus, which is separated from the
Control Bus to minimize any coordination overhead that may affect the actual emulation.

20

Figure 5. Main Coordination and Enforcement Components of the MLAB testbed

3.5.2 XLayer and MLAB Integration
XLayer enhances the usability of MLAB by providing a two-way interface between
higher-level applications and the emulation components (Table 3). At each node,
XLayer provides monitoring and control capabilities that enable users to transparently
interface their applications with the underlying emulation and communications
infrastructure. Applications use a proxy to communicate with the XLayer service to
gather environmental information and to control transmission power and node mobility.

21

Table 3. MLAB Software Components

Name Description
Controller Daemon Manages and controls the emulation environment. This

daemon maintains a global view of the network topology for
each active experiment and monitors the attributes of each
node (position, speed, and transmission power) to
continuously adjust the link characteristics based on the
packet drop and delay probability values indicated by the
theoretical and data-driven models.

Node Daemon Creates and manages the node's virtual emulation network
interface. It continuously reconfigures the interface to filter
incoming and outgoing packets according to the packet drop
and delay probability values as indicated by the controller.
This daemon also collects traffic statistics and periodically
sends feedback messages to the controller to be used for
calibration of the interference model.

XLayer Provides monitoring and control capabilities that enable users
to transparently interface their applications with the
underlying emulation and communications infrastructure.

MView Acts as a visualization and management tool for experiments.
It allows users to create, edit and remove experiments as well
as to visualize the network topology in a 3-D world. It also
provides a tool for setting the attributes of each node such as
speed, transmission power, position, and others.

When XLayer is used to interface applications with MLAB, the changes made at the
cross-layer level are relayed to the controller and the link characteristics are adjusted to
reflect the new conditions (Figure 6). Hence, the use of XLayer allows for easy testing of
applications because no assumptions need to be made about the underlying platform,
facilitating the deployment task outside the emulation environment.

22

Figure 6. Cross-Layer Services for the MLAB Emulation Environment

23

4 RESULTS AND DISCUSSION
During the life of the project, the XLayer was deployed, tested and evaluated in different
scenarios and demonstrations. In general each of the controller capabilities were tested
independently, in simulation, emulation of field-test environments. In this section we
provide a brief description of some of these studies, and refer the reader to additional
publications for further reading.
Each of the capabilities described in this section were development as XLayer
controllers and tested in one or more of the test platforms described in Section 3.4.
Collectively, they realize the requirements specified in Section 2.2, and constitute the
results of the proposed research effort.

4.1 Predictive Routing
In collaboration with the Army Research Laboratory, we have levered the distributed
monitoring capability (see 4.6) of the XLayer substrate to create POLSR, a predictive
routing protocol based on OLSR.
In most link state-based protocols like OLSR, changes in local topology are often
detected through periodic beaconing. Because of the distributed nature of the protocol,
each node is responsible for their own detection and reporting of unidirectional changes
– which are then aggregated and shared by other nodes upon notification of change.
While efficient, the approach leads to a slight inconsistency of state information that
could become relevant for some scenarios. This effect is illustrated in Figure 7, where a
snapshot is shown for a mobile network at four different times from left to right. In the
figure, solid nodes have a correct representation of the correct routing table, while open
nodes have inaccurate information induced by the changes in the network. As time
progresses, the number of nodes with a misrepresented view of the global topology
grows.

Figure 7. Mobility-induced routing table deviations with time (from left to right)

POLSR mitigates the inconsistency of state information by enabling each node to
estimate, based on the mobility of its neighbors, the changes in the network to improve
route calculation. The estimation of node mobility is indirect – either based on variations
of signal strength capture from lower layers, or based on mobility vectors explicitly
reported by nodes as part of their beaconing messages.

24

In this paper, we show that a local correction of topology based on simple mobility and
propagation models. As shown in Figure 8, a distributed corrective model can be added
to OLSR for route calculation. In Figure 8, Pt is the transmit power, and Pr the received
power. Gt and Gr are the antenna gains for the transmitter and the receiver, L is the
system loss, and λ is the wavelength. Based on the parameterized distance (d)
between transmitter and receiver the received power function (Pr (d)) can be used to
estimate the average and standard deviation of the log of the power at the receiver
node log(Pr (d)) .

Each node still makes an independent estimation of network topology for calculating the
routing table but it takes the beaconing delays, and the projected mobility patterns of its
neighbors into account.

()

() ()

()

() () ⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−+−

⎟
⎠
⎞

⎜
⎝
⎛ −⋅−

+
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−+−

⎟
⎠
⎞

⎜
⎝
⎛ −⋅−

=
2222 ''

''

''

''

yyxx
dt
dy

dt
dyyy

yyxx
dt
dx

dt
dxxx

dt
dr

Pr (d) =
PtGtGrλ

2

(4π)2 d0
2L

·(d
d0

)−β ·10XdB /10

Figure 8. Mobility and Propagation Models for POLSR

As described in [7], the POLSR enabled significant gains in reduced packed loss
(Figure 9) and jitter for random walk scenarios over uniformly distributed network
topologies.

Figure 9. POLSR Experimental Results

25

4.2 Adaptive Dual-Link Allocation for Transport Support
One of the capabilities provided by the XLayer substrate was the abstraction and
transparent utilization of multiple links (or overlapping networks) on each node. Data
links with different characteristics and capabilities could be used, in different contexts, to
support information management system or application level requirements.
On the example scenario illustrate in Figure 10, a pub-sub configuration was created
using the AFRL’s reference implementation of the Apollo Information Management
System (later replaced by the AFRL’s tactical IMS implementation called Phoenix).

Figure 10. Experimental Setup for Dual-Link Management Controller

In this scenario, a publisher sends information objects to the Apollo Server, which is
connected to an edge node through two redundant links (900 MHz and 3.4GHz). The
multiple links are supported by different interfaces connected to distinct radios for each
link. While the publisher application and Apollo server can choose to bind to any one of
the interfaces, the XLayer substrate abstracts both links into a single connection
between the two platforms.
The management of both data links is handled by the XLayer to support the application
requirements defined by the applications (or by related policies). In this example, the
application (represented by the IMS), may define a self-balancing policy for the links
(i.e. an adaptive strategy), or strategies that favor robustness or throughput.
In each case, the XLayer will balance the flow across the links provided to satisfy
application requirements. Also as part of this demonstration, an RF-flooded was used to
compromise one of the links (the 2.4 GHz) and simulated an external attack. The goal
was to ensure that, despite of any specific interfaces to which the applications may be
bound, the XLayer would transparently balance the flow across the different links to
maintain the requirements.

26

In Figure 11, the demonstration scenario shows the output for each of the three
requirement conditions specified by the applications, namely the favoring of capacity,
reliability or and adaptive behavior.

Figure 11. Online Strategies for Dual-Link Management, in Support to Application

Requirements

For capacity maximization, the XLayer uses both links as an aggregate pipe, alternating
information object transmissions for each of the links, based on their throughput
capacity and queue conditions. If favoring reliability (second case), the XLayer would
duplicate information management objects on both links, again in accordance with their
throughput limits and queue sizes. Information objects sent on both links were matched
on at the receiver side and dropped in the case of duplicates. The goal with the
duplication of objects was to minimize the loss of objects that could occur due to link
failures or external interferences.
In the adaptive scenario, there were no a-priori preferences chosen by the application.
The best link from a minimal error rate and maximum throughput perspective, in this
case, was chosen for transmission. External effects to the link, such as interference
created by the RF-flooder would results in re-allocation of resources to maintain
application requirements. Each of the cases illustrated in Figure 11, were demonstrated
at the AFRL PI meeting in 2008.

27

4.3 Dual-Path Algorithms for Tactical Environments
Another capability developed as a controller for the XLayer communications substrate
was the dual-path topology control algorithm. This effort was developed in collaboration
with Rockwell Collins and evaluated in a simulated environment, and it was published in
[1].
The dual-path algorithm bridged information from the transport and physical layers to
autonomously create two disjoint communication paths for an end-to-end data stream.
The resulting path was dynamically created as a reaction to the data flow and,
conditioned to resource availability, ensured that both data paths were node, and link
disjoint, eliminating cross-interference.
The goal of the protocol was to enable robust end-to-end data paths, with support from
topology control algorithms. While topology control could be obtained through power,
frequency or mobility management, our proof of concept implementation [1], focused on
mobility management.
The mobility was based on heuristics implemented at each node that would trigger
when interfering traffic from the same data flow was detected. Some of the heuristics for
the algorithm are illustrated in Figure 12.
Our initial publications of the dual-path algorithm were primarily focused on the
description of the algorithm and qualitative analysis of benefits. We refer the reader to
[1] for further details and for a description of the pseudo-code used for this controller.

Figure 12. Example heuristics for the dual-path algorithm

28

4.4 Adaptive Discovery and Information Dissemination
One of the core services of XLayer that we developed consisted of a discovery and
information dissemination mechanism capable of self-adapting to different network
topologies and traffic conditions. The main goal of this mechanism was to reduce the
number of retransmissions for broadcast packets while attempting to maintain the same
delivery rate of more simplistic broadcast techniques that are known to cause undesired
bandwidth congestion.
This adaptive mechanism made use of different broadcasting algorithms that are known
to perform better under certain network conditions [20]. Based on the characteristics of
the current network topology (i.e. sparse versus dense), the dissemination service
would activate a broadcast algorithm that was more suitable for the given network
topology and traffic conditions, reducing the number of retransmissions, and improving
the effectiveness of the broadcasting algorithm and the overall performance of the
dissemination mechanism.
In Figure 13 we show a comparison of a reliable flood mechanism for service discovery
based on simple flooding with our self-adaptive approach. The results demonstrate that
the delay and coverage (i.e. number of records found) are statistically the same in both
cases, but the number of retransmissions is significantly less for the adaptive case.

Figure 13. Adaptive Discovery/Dissemination based on Local Network Density

Another approach we explored was the use of dynamic backbones for dissemination of
service registrations based on an adaptive CDS-discovery mechanism (Figure 14),
providing a mechanism for balancing the trade-off between a higher number of
registrations versus higher lookup costs, which could be chosen by the framework on
demand.

29

Figure 14. Adaptive CDS-based Discovery

Collectively, these capabilities enabled enhanced discovery and also information
dissemination in general. For example, services such as monitoring and link-state
routing, which strongly rely on the dissemination of messages across the network,
leveraged the capabilities of this self-adaptive dissemination mechanism to efficiently
share network and node state information, while reducing the overhead caused by
unnecessary retransmissions of messages between nodes.

4.5 Dynamic Gateway Selection
Another capability developed and demonstrated as part of the XLayer communications
substrate was the dynamic selection of gateways for cross-domain routing. Cross-
domain routing is an important capability in tactical environments. In [8], we have
implemented a distributed algorithm for dynamic gateway selection that enables cross-
domain routing between different networks running different routing algorithms.
The purpose of this controller is to enable interaction between different networks
running different routing algorithms or routing policies coming within contact to one
another. The XLayer substrate must be able to detect and recognize both routing
algorithms and will determine how to identify and configure gateway nodes to bridge
across the networks.
Different routing protocols exist at each node, registered with the XLayer. Only one
protocol is active at each network until contact is established. As illustrated in Figure 15,
an unknown routing message is checked against all registered protocols and if a match
is found a gateway election algorithm is triggered.

30

Figure 15. Parsing unknown routing messages

Once elected to become a gateway, a node is responsible for sharing routes across
both networks, enabling the seamless routing across both networks. Only gateway
nodes execute more than one routing protocol, all other nodes remain on their original
protocols, learning new routes to the remote network through the gateway node.
The experimental evaluation of this work was done through simulated scenarios where
two networks running the HSLS and OLSR protocols are temporarily within range of one
another. A randomly chosen node in one of the networks is continuously trying to send
messages to randomly selected receiver on the remote network. Upon connection at the
boarder nodes, and gateway election, the sender node finds a route to the receiver and
starts sending data. To illustrate the capability, the performance was measured in terms
of packet drops and delay in route establishment.

31

Figure 16. Simulation results for the dynamic gateway controller

The mixed OLSR/HSLS scenario, called hybrid, was compared with a pure OLSR
environment where both networks were a-priori running OLSR, and a pure HSLS

environment where both networks were a-priori running HSLS (

Figure 16).

4.6 Distributed Monitoring Service
Distributed monitoring was another capability of the XLayer that we developed as one of
its core services. XLayer was designed to collect, aggregate, and share a distinctive
number of metrics using information available to the node, such as routes, packet drop
rates and delay estimations, number of interfaces, CPU usage, memory, disk, network
utilization, other predefined metrics, and service or application defined metrics.
Internally, XLayer maintained a table of metrics, each of those identified by a name and
a time-series data structure. Every time a new value was provided for a particular
metric, the time-series data structure was updated. When the statistics for a metric were
requested through the XLayer monitoring API, the time-series was used to compute the
average, variance, and trend of all the collected values in the time-series window.
XLayer-aware nodes leveraged on enhanced dissemination mechanisms (see 2.2.2) to
share and distribute the information across the network, so that nodes could build a
global state of the network that could allow other applications and XLayer services to
make informed decisions in order to satisfy particular QoS requirements.
Additionally, we developed a powerful notification mechanism based on simple
subscription rules that allowed applications to be notified about metric changes, trends
and range violations based on previously specified minimum and maximum thresholds.

4.7 Dynamic Integration of Heterogeneous Networks
The use of controllers to interface with service management systems allows the XLayer
substrate to seamlessly monitor and coordinate multiple heterogeneous networks for a

32

common mission. This capability was demonstrated in January 2009 as part of a
demonstration scenario at the AFRL.
The test scenario for the proposed demonstration is illustrated in Figure 17 and includes
multiple overlapping networks combined through nodes with multiple interfaces. Each
network is configured independently at the beginning at the test and the XLayer
substrate identifies the configuration and shares state information with other nodes to
allow for dynamic resource allocation and reconfiguration as necessary.

Figure 17. Seamless integration of heterogeneous networks

This part of the work has not been published but it may later be included as part of a
joint publication with the AFRL and Raytheon, both collaborators in this demonstration
effort.

33

Figure 18. Demonstration Phase A – Launching UAV

During the first phase (Phase A) of the demonstration (Figure 18) a Recon ground
soldiers launches a small UAV to locate potential threats in the area. The data link
maintained between the ground soldier and the UAV is a 900 MHz channel provided by
a serial Microhard Radio.
Upon detection of a potential target, the UAV starts publishing images to the IMS. As a
subscriber to the images, the TOC starts to receive MIOs from the IMS through the dual
link illustrated in Figure 19. For demonstration purposes, the two links between the IMS
and the TOC were set with Microlight EPLRS radios, and with an Ethernet connection,
representing a high-capacity direct link between the nodes.

34

Figure 19. A potential target is located in Phase B, triggering the publications of images

from the UAV

The scenario evolves with the TOC tasking the F16 fighter to locate the target (Figure
20). The F16 subscribes to the UAV images and starts receiving the data published by
the UAV. During this process, the XLayer is managing the node (and service) discovery,
and the resource allocation amongst the different links.
During the subsequent phases of the demonstration, the F16 moves to the location of
the target opportunistically managing different data links through its path and
seamlessly receiving image updates from the UAV. At all times, the XLayer manages
the allocation of the appropriate data-links for message passing, providing seamless
discovery and message dissemination across the heterogeneous data links.

35

Figure 20. Subsequent Phases of the Demonstration Scenario

36

5 CONCLUSIONS
The modular architecture of XLayer provides the necessary mechanisms to enable the
interaction between applications or middleware and the different levels of the
communications substrate, which makes the design of XLayer flexible enough to
support a large range of different scenarios and capabilities. This design also facilitates
the development of more complex functionality by leveraging on the information and
functionality provided by core services that abstract essential capabilities realized
across the various layers of the communications stack.
A rich set of APIs allow applications to better adapt and allocate resources for a given
task, while at the same time contributing to better define the information and resource
needs that can be used by XLayer to allocate the necessary capabilities so as to meet
the QoS requirements of applications. Thus, XLayer provides an extensible platform
suitable for research and experimentation of new protocols and algorithms for tactical
and mobile ad hoc networks for the battlefield.
XLayer was implemented, tested and demonstrated in multiple exercises and
experiments carried in collaboration with the Army Research Laboratory, the Air Force
Research Laboratory, and commercial companies like Raytheon Co. and Rockwell
Collins. During the life of the project, XLayer has been ported to several operating
systems such as Linux, OpenWRT, Pyramid, Windows, MacOS X, multiple computing
platforms, and tactical radios. Different configurations have been utilized to demonstrate
and highlight specific capabilities of XLayer, such as discovery, link sensing, adaptive
and predictive routing, topology control and adaptation, enhanced forwarding of
broadcast and multicast traffic, and others. When possible, XLayer was executed as
part of the communications device (e.g. Linksys-based 803.11 radios, the iPod Touch
platforms, and the Soekris-based radios). In other situations, such as the case where
XLayer needed to support tactical radios, the communication between the radios and
XLayer was realized through the implementation of customized interface adaptors or
pseudo-interfaces.
A multi-system demonstration including a tactical Information Management System for
an airborne ground-support operation scenario was executed at the Air Force Research
Laboratory in early 2009. During such demonstration, XLayer enabled seamless
operation across the multiple network and communications environments. The key
features of XLayer that made possible such integration include the utilization of multiple
redundant links to provide enhanced discovery, node and network resource monitoring,
seamless cross-domain routing and on-demand multi-path transport.
XLayer has also been applied in support of key capabilities for tactical Information
Management Systems for Airborne Network environments [5][6], quality-of-service
enabled data dissemination [13][14][15], emulation environments for airborne networks,
and several other applications in security and network management.

37

6 RECOMMENDATIONS
During the course of this research we have demonstrated several cross-layer algorithms
and controllers that can provide a direct improvement on the performance and
functionality of tactical information management systems. Furthermore, we have also
introduced and demonstrated a modular architecture to support the integration and
coordination of multiple controllers. Following our results and conclusions, we
recommend the following points for applying or continuing this research effort.

• Additional controllers and cross-layer algorithms: Different applications and
operational environments may benefit from different sets of capabilities and
possibly additional controllers. During our research, we have identified four topics
to illustrate the concept and have developed a few controllers for each topic. New
scenarios and applications may require additional controllers for the
communications substrate.

• Management Algorithms for the instantiation and orchestration of cross-layer
controllers. While we have applied different controllers to different scenarios, a
more comprehensive approach capable to opportunistically select, combine and
leverage the different is still needed for general applications. Policy-based
management infrastructures for QoS support could provide this capability.

• The design of self-organizing coordination controllers is necessary to enable the
combination of different capabilities for specific scenarios and applications. There
is a need for further research on self-organizing coordination approaches that
could benefit from the XLayer framework and the controllers for the different
layers.

38

7 REFERENCES

[1] M. Arguedas, C. Perez, M. Carvalho, A. Granados, K. Hoback, and W. Kraus.

Investigating the use of topology adaptation for robust multi-path transport: A
preliminary study. In NCA ‘09: Proceedings of the 8th IEEE International
Symposium on Network Computing and Applications, 2009.

[2] G. Ahn, A. Campbell, A. Veres, and L. Sun. SWAN: Service differentiation in
stateless wireless ad hoc networks. In INFOCOM ’02: Proceedings of the 21st
Annual Joint Conference of the IEEE Computer and Communications Societies,
Volume 2, pp. 457–466, 2002.

[3] V. Bharghavan, K. Lee, S. Lu, S. Ha, J. Li, and D. Dwyer. The TIMELY adaptive
resource management architecture. IEEE Personal Communications Magazine
5(4), pp. 20–31, 1998.

[4] T. Bova and T. Krivoruchka. Reliable UDP protocol. Internet Draft:
http://www.ietf.org/proceedings/99mar/I-D/draft-ietf-sigtran-reliable-udp-00.txt,
1999.

[5] M. Carvalho, A. Granados, W. Naqvi, A. Brothers, J. Hanna, and K. Turck. A
cross-layer communications substrate for tactical information management
systems. In MILCOM ’08: Proceedings of the IEEE Military Communications
Conference, pp. 1–7, 2008.

[6] M. Carvalho, A. Uszok, N. Suri, J. Bradshaw, P. Ceccio, J. Hanna, and A.
Sinclair. Enabling information management systems in tactical network
environments. Defense Transformation and Net-Centric Systems, 2009.

[7] M. Carvalho, R. Winkler, C. Perez, J. Kovach, and S. Choy. A cross-layer
predictive routing protocol for mobile ad hoc networks. In Proceedings of the
SPIE, 6981. Defense Transformation and Net-Centric Systems, 2008.

[8] M. Carvalho, C. Perez, and A. Granados. Dynamic gateway selection for cross-
domain routing with the XLayer communications substrate. The International
Workshop on Scalable Ad Hoc and Sensor Networks, Saint Petersburg, Russia,
October, 2009.

[9] A. Goldsmith, and S. Wicker. Design challenges for energy-constrained ad hoc
wireless networks. IEEE Wireless Communications Magazine 9(4), pp. 8–27,
2002.

[10] A. Granados, and M. Carvalho. Building and running the iPod/iPhone Multicast
Forwarding Plugin (IMF). Internal Technical Report, April 2009. Available online
at https://titan.ihmc.us/svn/manet/trunk/docs/reports/ipod-dev-imf.pdf

[11] A. Granados, and M. Carvalho. Building and running the MOLSR Plugin for the
iPod Touch. Internal Technical Report, April 2009. Available online at
https://titan.ihmc.us/svn/manet/trunk/docs/reports/ipod-dev-molsr.pdf

http://www.ietf.org/proceedings/99mar/I-D/draft-ietf-sigtran-reliable-udp-00.txt
https://titan.ihmc.us/svn/manet/trunk/docs/reports/ipod-dev-imf.pdf
https://titan.ihmc.us/svn/manet/trunk/docs/reports/ipod-dev-molsr.pdf

39

[12] S. Kunniyur, and R. Srikant. End-to-end congestion control schemes: Utility
functions, random losses and ECN marks. IEEE/ACM Transactions on
Networking (TON) 11(5), pp. 689–702, 2003.

[13] J. Loyall, M. Carvalho, D. Schmidt, A. Martignoni III, D. Schmidt, A. Sinclair, M.
Guillen, J. Edmonson, L. Bunch, and D. Corman. QoS enabled dissemination of
Managed Information Objects in a Publish-Subscribe-Query Information Broker.
Defense Transformation and Net-Centric Systems, 2009.

[14] J. Loyall, M. Gillen, A. Paulos, L. Bunch, M. Carvalho, J. Edmondson, P.
Varshneya, D. Schmidt, A. Martignoni III. Dynamic policy-driven Quality of
Service in service-oriented systems. IEEE International Symposium on Object-
oriented Real-time Distributed Computing (ISORC), Carmona (Parador de
Carmona), Spain, May 5-6, 2010.

[15] J. Loyall, A. Sinclair, M. Carvalho, A. Martignoni III, M. Gillen, L. Bunch, M.
Marcon. Quality of Service in US Air Force Information Management Systems.
MILCOM, Boston, MA, October 18-21, 2009.

[16] M. Mirhakkak, N. Schult, and D. Thomson. Dynamic bandwidth management and
adaptive applications for a variable bandwidth wireless environment. IEEE
Journal on Selected Areas in Communications 19(10), pp. 1984–1997, 2001.

[17] P. Sinha, R. Sivakumar, and V. Bharghavan. CEDAR: a core-extraction
distributed ad hoc routing algorithm. In INFOCOM ’09: Proceedings of the 18th
Annual Joint Conference of the IEEE Computer and Communications Societies,
Volume 1, pp. 202–209, 1999.

[18] R. Sivakumar, B. Das, and V. Bharghavan. Spine routing in ad hoc networks.
ACM Cluster Computing Journal 1(2), pp. 237–248, 1998.

[19] E. Tromp. The OLSR Multicast Forwarding plugin, 2006. Available online at
http://olsr.bmf.sourceforge.net

[20] B. Williams, and T. Camp. Comparison of broadcasting techniques for mobile ad
hoc networks. In MOBIHOC ’02: Proceedings of the 3rd ACM International
Symposium, 2002.

http://olsr.bmf.sourceforge.net

40

SYMBOLS, ABBREVIATIONS, AND ACRONYMS

API application programming interface
BMF basic multicast forwarding
CEDAR core-extraction distributed ad-hoc routing
CDS connected dominating set
CPU central processing unit
dRSVP dynamic resource reservation protocol
ECN explicit congestion notification
EPLRS enhanced position location reporting system
HSLS hazy-sighted link state routing

IMS information management system
JNI Java native interface
MAC medium access control
MANET mobile ad-hoc network
MIO management information object
MLAB an emulation testbed for mobile ad-hoc networks
OLSR optimized link state routing
POLSR predictive optimized link state routing
QoS quality of service
RSVP resource reservation protocol
SWAN self-organizing wireless adaptive network
TCP transmission control protocol
TIMELY adaptive resource management architecture for resource reservation
TOC tactical operations command
TUN/TAP virtual network kernel driver for software network interfaces
UAV unmanned aerial vehicle

UDP user datagram protocol

